Commutative Algebra Fall 2013, Lecture 17

Karen Yeats Scribe: Mahdieh Malekian

November 6, 2013

1 More on Krull Dimension

Throughout this section we will assume that R is a commutative ring.

Proposition 1 Let R be Artinian, then $K - \dim R = 0$ (i.e., every prime ideal is maximal).

Proof. Let P be a prime ideal of R. R/P is an integral domain and is Artinian. Take $a \neq 0, a \in R/P$, then $(R/P) a \supseteq (R/P) a^2 \supseteq \ldots$ is a descending chain, so $(R/P) a^n = (R/P) a^{n+1}$, so $a^n = ba^{n+1}$ for some $b \in R/P$, so 1 = ba, and a is a unit. Therefore R/P is a field, so P is maximal.

Proposition 2 Let R be Noetherian.

- 1. Some finite product of prime ideals of R is 0.
- 2. Given any ideal I of R, there exists a finite set $P_1, \ldots, P_t \supseteq I$ of prime ideals such that $P_1 \ldots P_t \subseteq I$.

Proof. First note that by I=0 (2) implies (1). Now we prove (2). Suppose (2) is false, and consider the set of counterexamples to (2). Since R is Noetherian this set has a maximal element, call it I. I is not prime, sine all prime ideals satisfy the condition of (2) using t=1. So there exist ideals $A, B \supseteq I, AB \subseteq I$, so A, B are not counterexamples to (2), so $\exists P_1, \ldots, P_t \supseteq A, P_1 \ldots P_t \subseteq A$ and $Q_1, \ldots, Q_s \supseteq B, Q_1 \ldots Q_s \subseteq B$, so

$$I \subseteq A \subseteq P_1, \dots, P_t, \qquad I \subseteq B \subseteq Q_1, \dots, Q_s,$$

but $P_1 \dots P_t Q_1 \dots Q_s \subseteq AB \subseteq I$, contradiction.

Definition 1 Let P be a prime ideal of R, and $S \subseteq R$. If there is no prime ideal Q with $S \subseteq Q \subseteq P$, P is called minimal.

Note. P is minimal over 0 iff height P = 0.

Proposition 3 Let R be Noetherian, $S \subseteq R$. There are only finitely many prime ideals of R which are minimal over S.

Proof. Let $I = \langle S \rangle$, then a prime ideal is minimal over S iff it is minimal over I. So by the previous proposition there exist $P_1, \ldots, P_t \supseteq I, P_1 \ldots P_t \subseteq I$. Take any prime ideal P which is minimal over I, so $P_1 \ldots P_t \subseteq P$ so some $P_i \subseteq P$. If $P_i \subseteq P$, then $I \subseteq P_i \subseteq P$, contradicting minimality, so $P_i = P$.

Proposition 4 R is Noetherian and $K - \dim R = 0 \iff R$ is Artinian.

Proof. Last time we showed R Artinian $\Rightarrow R$ Noetherian. Earlier today we proved R is Artinian $\Rightarrow K - \dim R = 0$, so \Leftarrow is done, now consider \Rightarrow . Suppose R is Noetherian and $K - \dim R = 0$. Take P_1, \ldots, P_t prime ideals with $P_1 \ldots P_t = 0$. Build a composition series similarly to last time. Consider $P_{i+1}P_{i+2}\ldots P_t/P_i\ldots P_t$, which is a vector space over R/P_i since $K - \dim R = 0$. So P_i is maximal, so by Noetherianness this vector space is finite dimensional. So put together the pieces as in the Artinian \Rightarrow Noetherian proof.

Example 1 Suppose R is a PID, take $0 \neq r \in R$. R/Rr has $K - \dim 0$, so is Artinian and Noetherian.

Corollary 1 Let R be Noetherian, let P be a height 0 prime ideal. Then R_P is Artinian.

2 The Principal Ideal Theorem

Theorem 1 (Principal Ideal Theorem) Let R be Noetherian, $P \in SpecR$. If P is minimal over $0 \neq a \in P$, then height $P \leq 1$.

Proof. Suppose on the contrary that $P'' \subsetneq P' \subsetneq P$ prime ideals. Then P/P'' is minimal over the image of a in R/P''. So we can replace R with R/P'' and hence we can assume (1) R is an integral domain, and (2) $0 \subsetneq P' \subsetneq P$.

Now localize at P. P_P is a prime ideal of R_P and is minimal over $\frac{a}{1}$. So we can replace R with R_P and hence can assume (3) R is local with unique maximal ideal P. So now suppose all this. P is minimal over a since P is the unique maximal ideal, P is the only prime ideal of R containing a. In particular $a \notin P'$. Observe that P is minimal over any power of a, because if $a^n \in Q \subseteq P$ then $a \in Q$ so Q = P. Pick $0 \neq b \in P'$. Let $A_i = \{r \in R : ra^i \in Rb\}$. Then $A_i \subseteq A_{i+1}$. So since R is Noetherian, n exists such that $A_n = A_{n+1} = \ldots = A_{2n} = \ldots$, so if $ra^{2n} \in Rb$, then $ra^n \in Rb$. P is minimal over a^n , so replace a by a^n , and we have

$$ra^2 \in Rb \Rightarrow ra \in Rb.$$
 (*)

Let

$$M = Ra + Rb$$
, $M' = Ra^2 + Rb$.

Note M' is a submodule of M. We will get a contradiction by proving $M = M', M \neq M'$.

- First let's show $M \neq M'$: Suppose on the contrary M = M', then $a = r_1 a^2 + r_2 b, r_1, r_2 \in R$. So $(1 r_1 a)a = r_2 b \in P'$, where $1 r_1 a$ is invertible, so $a \in P'$, contradiction.
- Now let's show M=M'. Let $\bar{R}=R/Ra^2$, this is Noetherian and $\bar{P}=P/Ra^2$ is the only prime ideal, so $K-\dim \bar{R}=0$. So \bar{R} is Artinian, so \bar{R} has a composition series. It suffices to prove $M/Ra^2=M'/Ra^2$. Both of these are finitely generated \bar{R} —modules, since they are finitely generated R—modules and are annihilated by Ra^2 . So M/Ra^2 and M'/Ra^2 are both Artinian and Noetherian and so have finite composition length. Since one is contained in the other it suffices to show they have the same length. Let

$$N = Ra$$
, $K = Ma = Ra^2 + Rba$.

Claim. $l(M/N) = l(K/Ra^2)$.

Proof of Claim. In any integral domain with $A \subsetneq B$ ideal, $r \neq 0, r \in R$, take

$$B \to rB/rA$$

 $b \mapsto rb + rA$.

The kernel of this map is A, so by First Isomorphism Theorem $^B/A \cong ^{rB}/rA$, so returning to our context $^M/N \cong ^{Ma}/Na = ^K/Ra^2$.

Claim. $l(N/Ra^2) = l(M'/K)$.

Proof of Claim. $N/Ra^2 = Ra/Ra^2 \cong R/Ra$. Let

$$\begin{split} f: &R \to {}^{M'}\!/{}_K \\ &r \mapsto rb + K. \end{split}$$

Then $r \in \ker f \iff rb = r_1a^2 + r_2ba$ for some $r_1, r_2 \in R$. If $r \in Ra$ then $rb = r_2ab$, so $r \in \ker f$. If $r \in \ker f$ then $r_1a^2 = (r - r_2a)b \in Rb$. Then by $(*) r_1a \in Rb$, so $r_1a = r_3b$ so $rb = r_2ab + r_3ab$, so $r = (r_2 + r_3)a \in Ra$. So $\ker f = Ra$, so $R/Ra \cong M'/K$ so $N/Ra^2 \cong M'/K$, which proves the claim.

The two claim above give

$$l(M/Ra^{2}) = l(M/N) + l(N/Ra^{2})$$
$$= l(K/Ra^{2}) + l(M'/K)$$
$$= l(M'/Ra^{2}),$$

so M = M'.

So we got contradiction, which completes the whole proof.

Corollary 2 Suppose R is Noetherian, and $P \supseteq P_1 \supseteq \ldots \supseteq P_k$ are prime ideals of R and $0 \neq a \in P$, then $\exists P'_i \in SpecR$ such that $P \supseteq P_1 \supseteq \ldots \supseteq P'_{k-1} \supseteq P_k$, and $a \in P'_{k-1}$.

Proof. We prove this by induction on k. As before replace R by R/P_k , so assume R is an integral domain and $P_k = 0$.

If k = 2 the statement says height P > 1. So by the Principal Ideal Theorem P is not minimal over a which implies the existence of P'_1 .

For k > 2, by induction $\exists P'_1, \dots, P'_{k-2} \in SpecR$ such that $P \supsetneq P'_1 \supsetneq \dots \supsetneq P'_{k-2} \supsetneq P_{k-1} \supsetneq 0$, and $a \in P'_{k-2}$. Now apply k = 2 case to get P'_{k-1} with $P \supsetneq P'_1 \supsetneq \dots \supsetneq P'_{k-2} \supsetneq P'_{k-1} \supsetneq 0$, and $a \in P'_{k-1}$.

Theorem 2 (Generalized Principal Ideal Theorem) Let R be a Noetherian ring, $P \in SpecR$. Let $A = \sum_{i=1}^{t} Ra_i$ be an ideal of R. If P is minimal over A then height $P \leq t$.

Proof. We prove the theorem by induction on t. t = 1 case is just the Principal Ideal Theorem. Now assume t > 1: Suppose $P \supseteq P_1 \supseteq \ldots \supseteq P_k$, we want to show that $k \le t$. By the corollary above we can assume that $a_t \in P_{k-1}$ so $P/Ra_t \supseteq P_1/Ra_t \supseteq \ldots \supseteq P_{k-1}/Ra_t$ is a chain of length k-1 in R/Ra_t , and P/Ra_t is minimal over $A/Ra_t = \left(\sum_{i=1}^{t-1} Ra_i\right) + Ra_t$, so by induction $k-1 \le t-1$, so $k \le t$.

Corollary 3 Let R be Noetherian, $P \in SpecR$. If P is spanned by t elements then height $P \le t$.

Proof. Set P = A in the previous result.